Brunel University in London is to begin researching future powertrain concepts using Camcon Automotive's new Single Cylinder Intelligent Valve Technology (SCI). The system uses the company's Intelligent Valve Technology (iVT) and is intended to significantly speed up OEM and Tier 1 engine development, helping meet upcoming emissions regulations while also reducing cost.

Brunel's Centre for Advanced Powertrain and Fuels (CAPF) plans to use SCI to further investigate the potential and control that digital valves provide.

"We are very excited to collaborate with Camcon Automotive in exploring and demonstrating the great potential of Intelligent Valve Technology," said Professor Hua Zhao, Director, CAPF, Brunel University London. "The technology's flexibility and superior controllability will enable the development of the next-generation powertrain with very high efficiency, low carbon and zero environmental impact emissions."

Based on iVT – which replaces the traditional camshaft on a gasoline engine with a set of digitally controlled electric actuators, reducing emissions and improving driveability – Single Cylinder iVT (SCI) is described by Camcon as 'the next-generation of single cylinder development systems, bringing real-time digital control and flexibility to the gas exchange process'.

Camcon claims that SCI has everything a research centre or R&D department needs to 'plug and play' straight out of the box.

It operates on both inlet and exhaust valves, offering endless development opportunities, including allowing researchers to focus on crucial combustion and after-treatment strategies, key to reducing emissions and improving fuel consumption.

How well do you really know your competitors?

Access the most comprehensive Company Profiles on the market, powered by GlobalData. Save hours of research. Gain competitive edge.

Company Profile – free sample

Thank you!

Your download email will arrive shortly

Not ready to buy yet? Download a free sample

We are confident about the unique quality of our Company Profiles. However, we want you to make the most beneficial decision for your business, so we offer a free sample that you can download by submitting the below form

By GlobalData
Visit our Privacy Policy for more information about our services, how we may use, process and share your personal data, including information of your rights in respect of your personal data and how you can unsubscribe from future marketing communications. Our services are intended for corporate subscribers and you warrant that the email address submitted is your corporate email address.

"We are thrilled to see our new SCI system being put to use by such a highly-regarded team," said Mark Gostick, Chief Operating Officer of Camcon Automotive. "It has been designed to facilitate exploration of next generation combustion strategies and highly efficient engines by OEMs and research institutes alike; a gateway to a new era of engine development. The boundless possibilities of digital valve control make it a very attractive option for those looking to refine ICE powertrain.

"iVT completely eliminates the conventional camshaft and for researchers, significantly reduces time needed to do a series of experiments – and improves the consistency of the results. Any valve event profile can be achieved and valve position can be monitored throughout the event using a bespoke sensor. It can mimic any valvetrain, enable on-the-fly cam changes and innovative combustion strategies. It represents an exciting opportunity for researchers, providing a significant new line of inquiry with industry-transforming implications. We will continue working closely with Professor Zhao and the CAPF team, eagerly anticipating the results of their research projects."

Camcon says SCI enables 'event shaping', allowing the maximum opening point of the valve to be skewed within the event. It also facilitates multiple events within one cycle, allowing extra exhaust events for Homogeneous-Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) combustion studies.

SCI provides each valve with a virtual camshaft of its own that can be 'changed' from one firing stroke to the next, rather than needing an engine strip and rebuild.

"It is this feature that saves so much time – and improves accuracy by allowing 'a-b-c-b-a-c' type testing to be conducted consecutively in the same run without stopping the engine and therefore under the same running conditions and with no engine stripping to disturb frictional effects," added Roger Stone, Camcon Automotive's Technical Director.

Under development for the last seven years, Camcon Automotive's iVT system has completed more than 1,000 hours on a dynamometer and a demonstrator vehicle has been built. Jaguar Land Rover has been an R&D partner throughout the project. iVT has been designed for ease of manufacture and affordability.

"The car industry is facing huge pressure to meet upcoming emissions regulations in both the short and the long term. Petrol engines will still have a major role to play, particularly in electrified, hybrid powertrains.

"For those applications, a smaller, more efficient, more controllable engine is a must. Rapid, reduced cost combustion development is absolutely key and we believe SCI will be crucial to continuing to unlock the potential of the internal combustion engine. Reducing CO2 now – and other harmful emissions – is better than preventing doing it in 2030," added Gostick.