Ford has developed the RoadSafe concept which could alert drivers to higher risk locations and make the insight available to local authorities to do something about them.

The technology uses a smart algorithm to crunch anonymised data from sources including connected vehicles, roadside sensors and accident reports to pinpoint where there is a higher chance of traffic incidents occurring.

This information can then be displayed on a map that identifies the level of risk and could also be used to warn drivers of hotspots.

“There are areas in every city where the chance of an incident is higher, whether it’s due to a poorly placed sign, an unrepaired pothole or junctions built to accommodate far less traffic than we have today. [We] can pinpoint the areas of concern, so drivers could be made more aware of them and authorities can address them,” said Jon Scott, city insights project lead, Ford Mobility Europe.

The digital tool is the culmination of four years of research by the automaker, including most recently a 20-month government-funded project conducted together with Oxfordshire County Council, Loughborough University and AI sensor specialists Vivacity Labs, with support from Transport for London and backing from Innovate UK.

The research began with an analysis of Greater London to highlight road safety hotspots and to identify the potential causes and safety mitigations.

How well do you really know your competitors?

Access the most comprehensive Company Profiles on the market, powered by GlobalData. Save hours of research. Gain competitive edge.

Company Profile – free sample

Thank you!

Your download email will arrive shortly

Not ready to buy yet? Download a free sample

We are confident about the unique quality of our Company Profiles. However, we want you to make the most beneficial decision for your business, so we offer a free sample that you can download by submitting the below form

By GlobalData
Visit our Privacy Policy for more information about our services, how we may use, process and share your personal data, including information of your rights in respect of your personal data and how you can unsubscribe from future marketing communications. Our services are intended for corporate subscribers and you warrant that the email address submitted is your corporate email address.

In the last 15 months, the research expanded to Oxfordshire, with more than 200 passenger and commercial vehicles voluntarily connected in London and Oxfordshire.

The data enabled the team to develop a Road Segment Risk Rating Heat Map which identifies stretches of road that are of particular concern.

This dashboard includes various layers of data, including historic accident data and a Risk Prediction rating algorithm for each road segment based on a range of data inputs, calculated using advanced data analytics techniques.

The Road Segment Risk Prediction rating uses colours to show where incidents are more likely to happen, with red having the highest risk level and yellow the lowest.

To gather the data, the connected vehicles record driving events, including braking, steering and accelerating, while Vivacity’s roadside sensors track the movements of different modes of transport. The sensors employ machine learning algorithms to detect near miss incidents and analyse movement patterns of vulnerable road users such as cyclists and pedestrians, as well as unconnected vehicles. All data shared by the sensors is anonymised with video feeds discarded at source, enabling safer roads without intruding on privacy.

Combining vehicle and sensor data can help identify a wide variety of hazards such as places where vehicles pass too close to cyclists, a poorly located bus stop causing traffic to become congested and badly designed infrastructure such as a roundabouts and junctions causing confusion and near misses.

For businesses and fleets, the RoadSafe algorithm could be used to optimise driver routing to detour away from particular problem areas, or warn drivers when they are in riskier areas, reducing potential down time resulting from incidents.

In the future, such technology could also benefit passengers riding in autonomous vehicles. Combining the onboard sensors of the vehicle with a digital tool could help them anticipate hazardous situations even earlier and therefore adapt their operation accordingly.