GKN Automotive, Drive System Design and the University of Nottingham are collaborating on an GBP8m project to design and develop a world leading electric vehicle powertrain for the global market.

ACeDrive (Advanced Cooling and Control of High Speed e-Drive) is backed by match-funding from the Advanced Propulsion Centre (APC).

Already progressing through concept selection, it aims to achieve the level of technology and performance outlined in the Automotive Council's roadmap for 2040 and be production ready by 2023.

ACeDrive is aiming to be the world's lightest and most efficient electric vehicle powertrain suitable for the volume market. To achieve this it adopts ground-breaking concepts in cooling and system integration, leading to a significant reduction in the number and size of components, the core targets for the programme are a 25% reduction in both packaging size and cost, a 20% drop in weight, and a 10% increase in efficiency compared to current equivalents.

The ACeDrive project will deliver a complete system that combines a downsized electric motor, optimised transmission and high-frequency inverter within a single unit, enabling shared cooling and a remarkably compact housing. This reduces packaging size and cost while fewer interfaces means less internal friction, improved transmission alignment and a boost in efficiency and NVH management.

GKN Automotive, a global Tier One electric vehicle driveline supplier, is responsible for the design of the ACeDrive system, including the overall packaging and the development of the motor, inverter and transmission. Following detailed simulation and analysis, final design will commence in Q3 2019. Prototyping, rig and vehicle testing will follow in 2020, before a vehicle demonstrator equipped with the prototype system is unveiled for public demonstration in Q1 2021.

How well do you really know your competitors?

Access the most comprehensive Company Profiles on the market, powered by GlobalData. Save hours of research. Gain competitive edge.

Company Profile – free sample

Thank you!

Your download email will arrive shortly

Not ready to buy yet? Download a free sample

We are confident about the unique quality of our Company Profiles. However, we want you to make the most beneficial decision for your business, so we offer a free sample that you can download by submitting the below form

By GlobalData
Visit our Privacy Policy for more information about our services, how we may use, process and share your personal data, including information of your rights in respect of your personal data and how you can unsubscribe from future marketing communications. Our services are intended for corporate subscribers and you warrant that the email address submitted is your corporate email address.

The project will be based at the GKN Automotive Innovation Centre in Abingdon, Oxfordshire, with support from consortium partner Drive System Design in Leamington Spa, Warwickshire, as well as the University of Nottingham.

Drive System Design is one of Europe's leading automotive engineering consultancies, with a reputation for technical excellence in the field of electric drive unit efficiency and NVH optimisation. Its simulation-led approach will optimise ACeDrive as a whole unit, thereby identifying key trade-offs much earlier in the design process than is usually possible. Ultimately, its enhanced test capabilities will meet the growing requirements of the automotive industry for higher speed electric motor testing – up to and beyond 20,000rpm, and with voltages over 800V.

The University of Nottingham is noted for its expertise in thermal management,  semiconductor technology and high-speed motors. It will lead the development of the electric motor, the power electronics modules and advanced integrated cooling. Central to the ACeDrive concept will be the use of advanced SiC transistors, enabling higher frequency control unlocking efficiency improvements, enabling a high speed, next-generation design that is smaller than current motors of equivalent power and affordable for OEM customers.